Finite Set Operations
The operations and
apply to two sets; we can however use them to combine more than one set. If we have a finite collection of sets
, we write
(1)
Activity. Give a better definition of and
. (Hint. What did we say about definitions involving
?)
De Morgan's Laws. For any finite collection of sets ,
Exercise. Prove this version of de Morgan's Laws.
Transfinite Operations
There is no reason to restrict our attention to {\em finite} collections of sets. For example, we might consider
the collection of intervals of the form , where
is allowed to be an natural number,
or perhaps
the set of all disks centered at the origin
each of which consists of an infinite number of sets. We usually use set-builder notation to write something like
(2)
or
(3)
to emphasize that what we are dealing with is a(n infinite) set of sets. (Here we have written for the disk of radius
centered at the origin.) We call the set to the right of the pipe the index set: in these collections the index sets are
and the interval
, respectively.
We can define unions and intersections of such infinite collections of sets by recalling that acts like a souped-up version of
and
acts like a souped-up version of
.
Given a collection of sets , we set
Definition.
E.g.
Proof. Let . Then there is some
with
, so
. Thus
.
Now let . Then there is some
with
. But
, so
.
E.g.
Proof. Certainly the origin is in each disk
. We will show it is the only such point.
Consider any point in the plane. Let
be the distance between
and the origin. Then if we select
, we see that
. Thus
cannot be in every
.
de Morgan's Laws. For any collection , we have
Exercise. Prove this version of de Morgan's Laws.
Exercise. What is each of the following sets?
Exercise Express each set below as either a generalized union or a generalized intersection, and also express it in set-builder notation.